

Description

The LTR-2679PS-01is an integrated low voltage I2C proximity sensor (PS), with built-in emitter in a single miniature chipled lead-free surface mount package.

With built-in proximity sensor (VCSEL emitter and detector), LTR-2679PS-01offers the feature to detect object at a user configurable distance

The sensor supports an interrupt feature that removes the need to poll the sensor for a reading which improves system efficiency. The sensor also supports several features that help to minimize the occurrence of false triggering. This CMOS design and factory-set one time trimming capability ensure minimal sensor-to-sensor variations for ease of manufacturability to the end customers.

Application

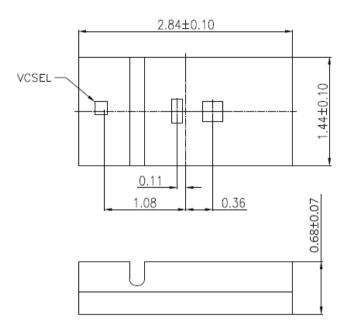
- Control brightness of display panel
- Object detection in mobile, computing, and consumer devices.

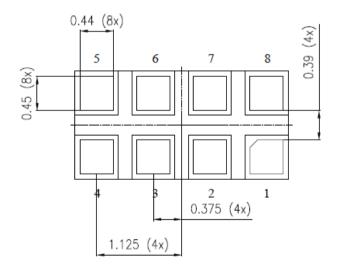
Features

- PC interface (Standard mode @100kHz or Fast mode @400kHz)
- Proximity Sensing in one ultra-small chipled package
- Very low power consumption with sleep mode capability
- Operating voltage ranges: 1.7V to 3.6V
- Operating temperature ranges: -30 to +85 °C
- Programmable interrupt function for PS with upper and lower thresholds
- RoHS and Halogen free compliant

PS Features

- Built-in VCSEL LED driver
- High ambient light suppression
- 16-bit effective resolution
- > 11-bit or 16-bit display
- > Cancellation of crosstalk
- Programmable VCSEL LED drive setting
- Ambient IR saturation indicator


Ordering Information


Part Number	Packaging Type	Package	Quantity
LTR-2679PS-01	Tape and Reel	8-pin chipled package	4000pcs

Part No. : LTR-2679PS-01

1. Outline Dimensions and Pins Configuration

Pin-Out Assignment:

1. SCL

5. NC

2. SDA

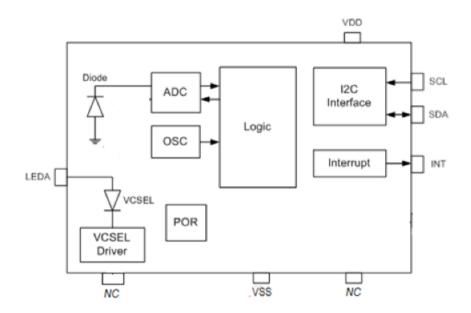
6. NC

3. VDD

7. *INT*

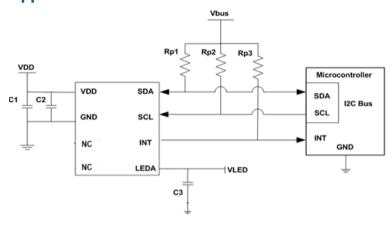
8. GND

4. LEDA


Note: All dimensions in millimeter

Part No.: LTR-2679PS-01 BNS-

2. Functional Block Diagram


The LTR-2679PS-01contains an integrated proximity photodiode for photocurrent measurement. The photodiode current is converted to digital values by an ADC. The sensor also included a VSCEL driver, as well as some peripheral circuits such as an internal oscillator, a current course, voltage reference, and internal fuses to store trimming information.

Part No. : LTR-2679PS-01

3. Application Circuit

Note: It is a requirement to separate the VDD and VLED

I/O Pins Configuration Table

Pin	I/O Type	Symbol	Description
1	OUT	SCL	I ² C serial clock
2	IN/OUT	SDA	I2C serial data
3	Supply	VDD	Supply Voltage
4	Supply	LEDA	LED Anode. Connect to VBAT on PCB
5	NC	NC	No Connection to this pin
6	NC	NC	No Connection to this pin
7	OUT	INT	Interrupt pin
8	GND	GND	Ground

Recommended Application Circuit Components

Component	Recommended Value
Rp1, Rp2, Rp3 [1]	1 k Ω to10 k Ω
C1, C3	1uF ±20%, X7R / X5R Ceramic
C2	0.1uF

[1] Selection of pull-up resistors value is dependent on bus capacitance values. For more details, please refer to I²C Specifications: http://www.nxp.com/documents/user_manual/UM10204.pdf

Part No. : LTR-2679PS-01

4. Ratings and Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Min.	Max	Unit
Supply Voltage	VDD		4.5	V
Digital Voltage Range	SCL, SDA, INT	-0.5	4.5	V
Max Voltage Range	LDR	-0.5	4.5	V
Storage Temperature	Tstg	-40	85	°C
Electrostatic Discharge Protection	Vнвм		2000	V
(Human Body Model JESD22-A114)	v нвм		2000	V

Note: Exceeding these ratings could cause damage to the sensor. All voltages are with respect to ground. Currents are positive into, negative out of the specified terminal.

Recommended Operating Conditions

Description	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	VDD	1.7		3.6	V
LED Supply Voltage	VLED	2.8		4.35	V
Interface signal input high	VI2Chigh	1.5		VDD	V
Interface signal input low	V ₁₂ Clow	0		0.4	V
Operating Temperature	Торе	-30		85	°C

Electrical & Optical Specifications

All specifications are at VDD = 3.0 V, T_{ope} = 25°C, unless otherwise noted.

Parameter	Min.	Тур.	Max.	Unit	Condition
PS Active Supply Current		120	200	uA	100ms MRR with 32 pulse 100% duty cycle
Standby Current			5	uA	Shutdown Mode
Wakeup Time from Standby		5	10	ms	From Standby to Active mode where measurement can start

Part No. : LTR-2679PS-01

Characteristics Proximity Sensor

Parameter	Min.	Тур.	Max.	Unit	Condition
PS Resolution			16	Bit	Configurable to 11 bit display (capped at 2047) or 16 bit
Sensitivity Range		940		nm	
Detection Distance		3		cm	5 pulse, 32us, 7mA
LED Pulse Current			9	mA	Configurable
LED Pulse width			32	us	Configurable for 4,8,16,32 us
LED Duty Cycle		100		%	
Number of LED Pulses	1		32	Pulses	Programmable from 1 to 32
Number of LED Pulses	ı		32	ruises	pulses
Ambient light suppression **			100	klux	Direct sunlight

Part No. : LTR-2679PS-01

Typical Device Parameter

(VDD = 2.8V, Ta=25°C, Default power-up settings, unless otherwise noted)

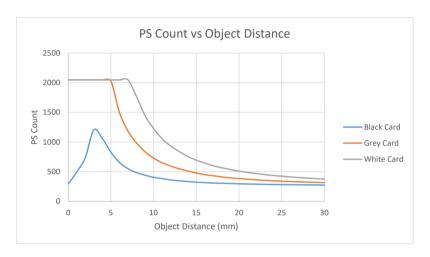


Figure 4.1: PS performance across distance VDD 3V, 7mA, 5pulses, with others in default settings

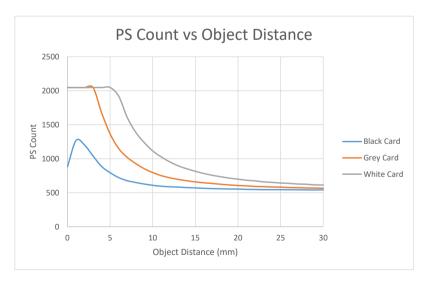
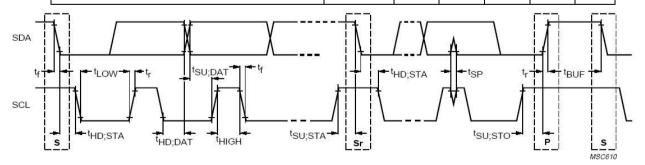


Figure 4.2 PS performance over Gray Card (18% reflectivity) with window glass of 0.6mm thickness, VDD 3V, 7mA,

5pulses with others in default settings

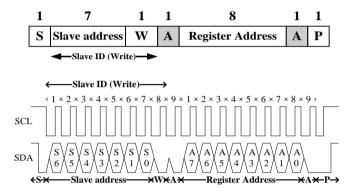

Part No.: LTR-2679PS-01 BNS-

AC Electrical Characteristics

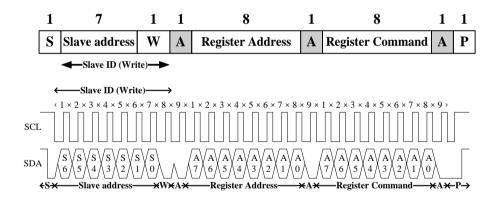
All specifications are at VBus = 1.7V, Tope = 25°C, unless otherwise noted.

Parameter	Symbol		dard ode	Fast mode		
		Min.	Max.	Min.	Max.	Unit
SCL clock frequency	$f_{\scriptscriptstyle SCL}$	10	00	40	00	kHz
Bus free time between a STOP and START condition	$t_{\scriptscriptstyle BUF}$	4.7	-	1.3	-	us
Hold time (repeated) START condition. After this period, the first clock pulse is generated	$t_{{\scriptsize HD;STA}}$	4.0	-	0.6	-	us
LOW period of the SCL clock	t_{LOW}	4.7	-	1.3	-	us
HIGH period of the SCL clock	t_{HIGH}	4.0	-	0.6	-	us
Set-up time for a repeated START condition	$t_{SU;STA}$	4.7	-	0.6	-	us
Set-up time for STOP condition	$t_{\scriptscriptstyle SU;STO}$	4.0	-	0.6	-	us
Rise time of both SDA and SCL signals	t_r	-	1000	-	300	ns
Fall time of both SDA and SCL signals	t_f	-	300	-	300	ns
Data hold time	$t_{HD;DAT}$	0	-	0	-	us
Data setup time	$t_{SU;DAT}$	250	-	100	-	ns

Part No. : LTR-2679PS-01



Definition of timing for I²C bus


5. Principles of Operation

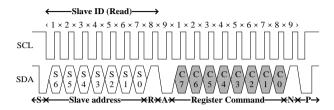
I²C Protocols

. I²C Write Protocol (type 1):

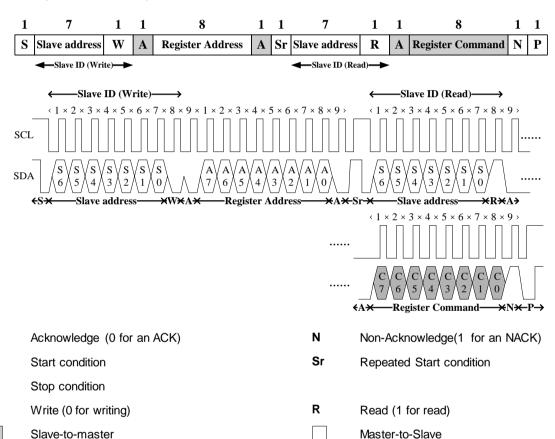
. I²C Write Protocol (type 2):

. I2C Read Protocol:

Part No. : LTR-2679PS-01



Α


S

W

OPTICAL SENSOR LTR-2679PS-01

. I2C Read (Combined format) Protocol:

I2C Slave Address

The 7 bits slave address for this sensor is 0x23H. A read/write bit should be appended to the slave address by the master device to properly communicate with the sensor.

				I ² C Slave	Address				
Command		(0x23H)							(0x23H)
Туре	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Write	0	1	0	0	0	1	1	0	0x46H
Read	0	1	0	0	0	1	1	1	0x47H

6. Register Set

Address	R/W	Register Name	Description	Reset Value
0x81	RW	PS_CONTR	PS operation mode control/SW Reset	0x10
0x82	RW	PS_LED	PS LED setting	0x7A
0x83	RW	PS_N_PULSES	PS number of pulses	0x00
0x84	RW	PS_MEAS_RATE	PS measurement rate in active mode	0x04
0x86	R	PART_ID	Part Number ID and revision IDs	0x1C
0x87	R	MANUFAC_ID	Manufacturer ID	0x05
0x91	R	PS_STATUS	PS Status	0x08
0x92	R	PS_DATA	PS measurement data, LSB	0x00
0x93	R	PS_DATA	PS measurement data, MSB	0x00
0x98	RW	INTERRUPT	Interrupt settings	0x08
0x99	RW	INTERTUPT_PERSIST	PS interrupt persist setting	0x00
0x9A	RW	PS_THRES_HIGH_LSB	PS interrupt upper threshold, LSB	0xFF
0x9B	RW	PS_THRES_HIGH_MSB	PS interrupt upper threshold, MSB	0xFF
0x9C	RW	PS_THRES_LOW_LSB	PS interrupt lower threshold, LSB	0x00
0x9D	RW	PS_THRES_LOW_MSB	PS interrupt lower threshold, MSB	0x00
0x9E	RW	PXTALK_LSB	Xtalk correction on PS CH0 PD, LSB	0x00
0x9F	RW	PXTALK_MSB	Xtalk correction on PS CH0 PD, MSB	0x00
0xA4	RW	LED_DRIVE	LED driver Register	0x00

Part No. : LTR-2679PS-01

0xB6	RW	IR AMBIENT SAT VALUE	IR Ambient saturation value	0x08
0xB7	RW	DSS_CONTR	Dynamic Sunlight Suppression control	0x40
0xAD	RW	MAIN_CONTR	Main Control Setting	0x00

PS_CONTR Register (0x81) (Read/Write)

The PS_CONTR register controls the PS operation modes and software reset for sensor. The PS sensor can be set to either standby mode or active mode. At either of these modes, the I2C circuitry is always active. The default mode after power up is standby mode. During standby mode, there is no PS measurement performed but I2C communication is allowed to enable read/write to all the registers. Register 0xA4 must be set to 0x04, register 0xAD must be set to 0x18 and register 0xB7 must be set to 0x10.

0x81		PS_CONTR (default = 0x10)									
	Bit 7 Bit 6		Bit 5	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1				Bit 0			
	Rese	rved	Resolution	Reserved	PS_OS	FTN/NTF enable	PS Mode	SW Reset			

Field	Bits	Default	Descr	iption				
Reserved	7:6	00	Must v	write as 00				
Decelution	_	0	0	11 bit Display (default)				
Resolution	5	0	1	16 bit Display				
Reserved	4	1	Must	Must write 1				
			PS Off	set/Xtalk Cancellation. When enabled, PS DATA will be subtracted				
DC OC	0	0	with PS OFFSET register (0x9F + 0x9E) data.					
PS_OS	3		0	Disabled (default)				
			1	Enabled				
FTN/FTN	0		0	Disable FTN/NTF Status reporting (default)				
EN	2	0	1	Enable FTN/NTF Status reporting				
PSMODE*1		0	1	Active Mode				
L2MODE.,	1	0	0	Stand-by mode (default)				

Part No. : LTR-2679PS-01

			Reset	registers to default values, with sensor into standby mode.
SW_RST	0	0	0	No action (default)
			1	Reset Registers to default values (including calibration values)

^{• *1} Prior to enabling PS Mode, 0xA4 must be set to 0x04, 0xAD must be set to 0x18 and 0x7B must be set to 0x10. Please refer to Enable PS pseudocode for complete instructions

PS_LED Register (0x82) (Read/Write)

The PS_LED register controls the LED pulse width and LED peak current. **The minimum LED current should be** at least 5.5 mA to turn on the VCSEL.

0x82	PS_LED (default = 0x7A)									
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
		Reserved		PLED Pu	ılse Width	LED current				

Field	Bits	Default	Description	on		
Reserved	7:5	011	Must write as 011			
DIED			00	4us		
PLED Pulse	4:3	14	01	8us		
Width	4.5	11	10	16us		
VVIGUI			11	32us (default)		
		010	3.5 mA (default)			
			011	4.5 mA		
LED	2:0	010	100	5.5 mA		
current	2.0	010	101	6.5 mA		
			110	7 mA		
			111	9 mA		

Part No. : LTR-2679PS-01

PS_N_Pulses Register (0x83) (Read/Write)

The PS_N_Pulses register controls the PS averaging factor and LED pulses to be emitted.

0x83		PS_N_Pulses (default = 0x00)									
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
	PS avera	ging factor	Reserved	PS number of LED pulses							

Field	Bits	Default	Descri	ption					
PS			00	No average (default)					
averaging	7:6	00	01	2n averaging					
factor	7.6	10 4n averaging							
			11	8n averaging					
Reserved	5	0	0	Reserved					
PS number				Constitution DOLED complete of code as a 16 DO complete of code as at the					
of LED	4:0	00000		Specifies PS LED number of pulses. If PS number of pulse set to					
pulses				0, the pulse count will be 1.					

PS_MEAS_RATE Register (0x84) (Read/Write)

The PS_MEAS_RATE register controls the timing of the periodic measurements of the PS in active mode.

Measurement Repeat Rate is the interval between DATA registers update.

0x84		PS_MEAS_RATE (default = 0x04)									
	Bit 7	Bit 6	Bit 5	Bit 2	Bit 1	Bit 0					
			Reserved			PS Measurement Repeat Rate					

Field	Bits	Default	Description				
Reserved	7:3	00000	Must write as 00000				
PS Measurement	2:0	100	000	6.125ms			
Rate	2.0	100	001	12.5ms			

Part No. : LTR-2679PS-01

	010	25ms
	011	50ms
	100	100ms (default)
	101	200ms
	110	400ms
	111	800ms

PART_ID Register (0x86) (Read Only)

The PART_ID register defines the part number and revision identification of the sensor.

0x86		PART_ID (default = 0x1C)										
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
		Part Nu	mber ID		Revision ID							

MANUFAC_ID Register (0x87) (Read Only)

The MANUFAC_ID register defines the manufacturer identification of the sensor.

0x87		MANUFAC_ID (default = 0x05)									
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
				Manufacti	urer ID						

PS_Status Register (0x91) (Read Only)

0x91	PS_Status (default = 0x08)										
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	Reser	ved	FTN	NTF	Reserved	PS IR Ambient Saturation	PS Interrupt Status	PS Data Status			

Part No. : LTR-2679PS-01

Field	Bits	Default	Description	
Reserved	7:6	00		Reserved
FTN	5	0	0	No far to near object detected (default)
FIN	5	0	1	Far to near object detected
NITE	4	0	0	No near to far object detected (default)
NTF	4	0	1	Near to far object detected
Reserved	3	1		Reserved
PS IR Ambient	2	0	0	No PS IR ambient saturation (PS data is valid)
Saturation	2	0	1	PS IR Ambient saturation happens (PS data is invalid)
PS interrupt	1	0	0	interrupt signal INACTIVE (default)
status	I	0	1	interrupt signal ACTIVE
DC data atatua			0	OLD data (data already read), (default)
PS data status	0	0	1	NEW data (first time data is read)

PS_DATA Register (0x92 ~ 0x93) (Read Only)

PS measurement results are stored in PS_DATA registers. It is necessary to do a block read on both registers 0x92 and 0x93 to ensure the data integrity.

0x92		PS_Data LSB (default = 0x00)							
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						Bit 0		
				F	PS Data LSB				

Field	Bits	Default	Description
PS_Data LSB	7:0	0000 0000	PS measurement data LSB

0x93		PS_Data MSB (default = 0x00)							
	Bit 7	Bit 6 Bit 5 Bit 4 Bit 3				Bit 2	Bit 1	Bit 0	
	IR SAR		Re	eserved		F	PS Data MSB	1	
Field		Bits	Default	Default Description					

Part No. : LTR-2679PS-01

PS IR Ambient	7	0	0	No PS IR ambient saturation (PS data is valid)
Saturation	,	U	1	PS IR Ambient saturation happens (PS data is invalid)
Reserved	6:3	0000		Reserved
PS_Data MSB	2:0	000		PS_Data MSB

INTERRUPT Register (0x98) (Read/Write)

INTERRUPT register controls the operation of the interrupt pin and functions. The PS_STATUS register is updated even if interrupt pin is INACTIVE / high-impedance state. Bit 7 of 0x98 must be set to 1 even though Interrupt function is not used.

0x98		INTERRUPT (default = 0x08)								
	Bit 7	Bit 6	Bit 5	Bit 3	Bit 2	Bit 1	Bit 0			
			Reserved	Interrupt Polarity	Interruj	ot Mode				

Field	Bits	Default	Description	
Reserved	7:3	00001		Must write as 10000
Interrupt Polarity	2	0	0	INT pin is considered active when it is a logic 0 (default)
Polarity			1	INT pin is considered active when it is a logic 1
	00	00	Interrupt pin is INACTIVE / high impedance state (default)	
Interrupt mode	1:0	00	01	Only PS measurement can trigger interrupt
			1x	Reserved

Part No. : LTR-2679PS-01

INTERRUPT PERSIST Register (0x99) (Read/Write)

INTERRUPT PERSIST register sets the N number of times the measurement is out of the threshold range settings before asserting the INTERRUPT pin.

0x99		INTERRUPT PERSIST (default = 0x00)								
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
		PS_PE	RSIST			Res	served			

Field	Bits	Default	Description		
		0	Every PS value out of threshold range (default)		
DC DEDCICT	7.4		1	1 consecutive PS values out of threshold range	
PS_PERSIST	7:4	0			
			1111	15 consecutive PS values out of threshold range	
Reserved	3:0	0		Reserved	

PS_THRESHOLD Register (0x9A -0x9D) (Read/Write)

PS_THRESHOLD registers are used to set the upper and the lower limits of the absolute interrupt threshold value. Interrupt function compares the value in the PS_THRESHOLD registers to measured data value in PS_DATA registers. The data format for PS_THRESHOLD registers must be the same as that of PS_DATA registers. PS_Threshold registers must be written in the sequence of LSB first and then followed by MSB.

Field	Bits	Default	Description	
PTH_HIGH LSB	0x9A	11111111		PS upper interrupt threshold value, LSB
PTH_HIGH MSB	0x9B	11111111		PS upper interrupt threshold value, MSB
PTH_LOW LSB	0x9C	00000000		PS lower interrupt threshold value, LSB

Part No. : LTR-2679PS-01

PTH_LOW MSB	0x9D	00000000	 PS lower interrupt threshold value, MSB

PS_ OFFSET Register (0x9E -0x9F) (Read/Write)

PS OFFSET registers let user define PS crosstalk of the device. PS data will be subtracted by this OFFSET value if PS_OS is enabled at register 0x81.

Field	Bits	Default	Description
PS OFFSET LSB	0x9E	0	PS OFFSET LSB
PS OFFSET MSB	0x9F	0	PS OFFSET MSB

LED_DRIVE Register(0xA4) (Read/Write)

LED DRIVE register controls the LED driving current capability. Bit 2 must be set to 1 for VSCEL as module is integrated with VCSEL LED.

0xA4	LED_DRIVE (default = 0x00)									
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
	Reserved					VCSEL driver	Res	served		

Field	Bits	Default	Description		
Reserved	7:3	00000		Must write as 00000	
VCSEL driver	2	0	VCSEL	Must write as 1	
Reserved	1:0	00		Must write as 00	

Part No. : LTR-2679PS-01

PS IR Ambient Saturation Value Register (0xB6) (Read/Write)

The PS data (0x93 + 0x 92) will be forced to 0 when 10Klux of direct sunlight is detected. It is necessary to write 0xB6<3:0> with a value of 0000.

A proximity Sunlight Saturation status flag 0x91<2> will return a value of 1 when saturation happens.

Alternatively, the proximity Sunlight Saturation status flag is also mirrored in 0x93<7>. This register is part of the proximity data registers (0x93 + 0x92).

This method is used to ensure the proximity operation does not become unstable and cause a false detection due to interference caused by very high IR ambient (i.e. under strong sunlight).

0xB6	PS IR Ambient Saturation Register (default = 0x08)								
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	Reserved				IR Ambient Saturation Value				

Field	Bits	Default	Description	
Reserved	7:4	0000		Must write as 0000
Saturation Value	3:0	1000		Must write as 0000

DSS CONTR Register (0xB7) (Read/Write) -PS SAR related

The DSS_CONTR register control the DSS features, it must be written with 0x10 before enabling PS.

0xB7	DSS CONTR Register (default = 0x10)								
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	Reserved								

Field Bits

Part No. : LTR-2679PS-01

Reserved	7:0	0000 0000	Must write as 0001 0000
Reserved	7.0	0000 0000	must write as ooo'r ooo

MAIN_CONFIG Register (0xAD) (Read/Write)

The MAIN_CONFIG register must be written with 0x18 before enabling PS

0xAD	MAIN_CONFIG Register (default = 0x00)								
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	Reserved								

Field	Bits	Default	Description
Reserved	7:0	0000 0000	Must write as 0001 1000

Part No. : LTR-2679PS-01

7. Application Information

7.1 Operating Mode

Stand-by Mode

The device is by default in stand-by mode after power-up. No measurement activity done in PS. I2C communication is allowed to be able to read/write to the registers. The device can be reset from MCU by setting appropriate register control (SW reset). Start-up sequence is exactly the same as that when power-on reset is triggered.

Active Mode

During active mode, measurement data is expected to be available within a known fixed time (refer to measurement time parameter from PS specification).

7.2 Interrupt Features

The interrupt function is active if PS measurements are outside of the upper and lower absolute threshold levels set in the appropriate threshold register. Only newly measured data is compared to the threshold levels set such that old data will not cause triggering of the INT pin if in case the threshold levels are changed in between measurements.

The status of interrupt can be monitored directly through the interrupt (INT) pin or by checking contents of the interrupt register. Interrupt pin can either be enable or disabled. It is possible to invert interrupt output of LOW or HIGH state.

Interrupt pin IO requirements are exactly the same as those of the I2C bus pins SDA and SCL.

There are two user selectable types of interrupt, namely window interrupt type & logic interrupt type. Refer to Figure 7.2.1 and 7.2.2 for illustration.

Part No. : LTR-2679PS-01

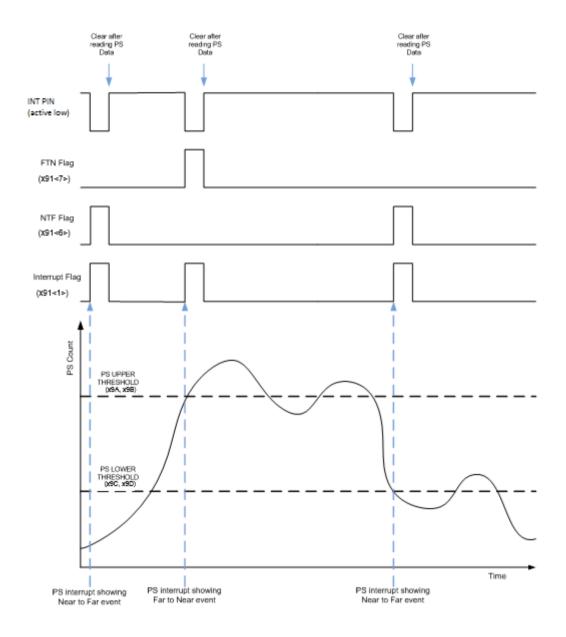


Figure 7.2.1 : Interrupt illustration on logic type (with NTF/FTN reporting)

(Logic Mode: activated by control register PS_CONTR (0x81<2>) and INTERRUPT (0x91<1>))

Part No. : LTR-2679PS-01

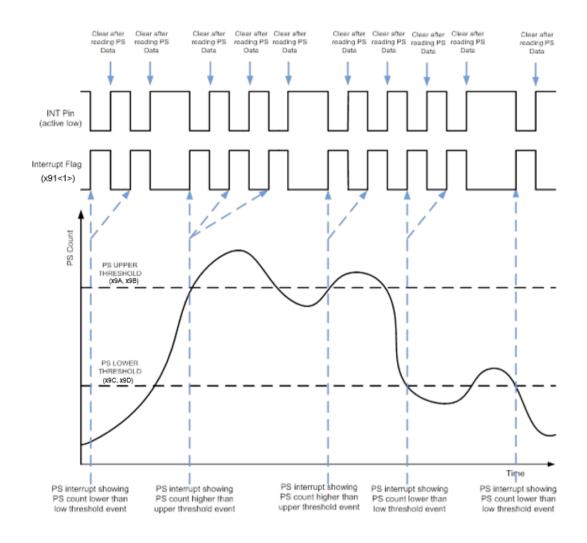
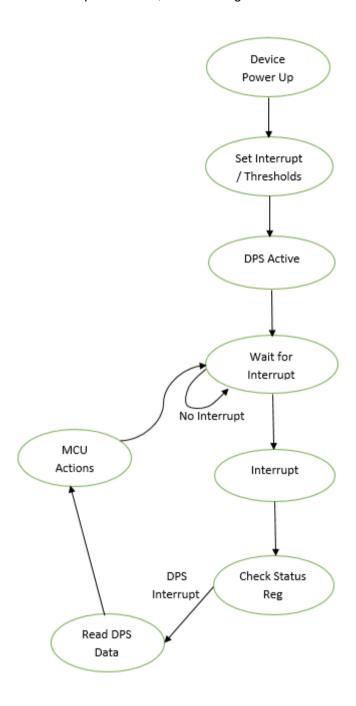



Figure 7.2.2 : Interrupt illustration on window type (by default, without NTF/FTN reporting)

Part No. : LTR-2679PS-01

Flow diagram below illustrates the operation flow, and involving the use of Thresholds and interrupt.

Part No. : LTR-2679PS-01

8. Pseudo Codes Examples

LED Driver Registers

```
// This LED DRIVE registers define the VCSEL current control
```

// The register must be set to 0x04 to appropriate VCSEL driving current is used.

```
Slave_Addr = 0x23  // Slave address of LTR-2679PS-01device

Register_Addr = 0xA4

Command = 0x04  // For selecting VCSEL driving current, Command = 0x04
```

PS LED Registers

// The PS LED Registers define the driving peak current.

```
Slave Addr = 0x23 // Slave address of LTR-2679PS-01device
```

// Set LED Pulse width 4us (with default peak current of 3.5mA)

// Default setting is 0x7A (Pulse width 32us, 3.5mA).

WriteByte(Slave_Addr, Register_Addr, Command)

// Set LED Peak Current 5.5mA (with default pulse width 32us)

WriteByte(Slave_Addr, Register_Addr, Command)

PS_N_Pulses Register

```
// The PS_N_Pulses register controls the number of LED pulses to be emitted.
// Default setting is 0x00.

Slave Addr = 0x23  // Slave address of LTR-2679PS-01device
```

Part No. : LTR-2679PS-01


```
// Set PS averaging factor 0 (with default number of pulse 1)
                                                     // PS_N_Pulses register
Register_Addr = 0x83
Command = 0x00
                                                     // For PS averaging factor 0, Command = 0x00,
                                                     // For PS averaging factor 2, Command = 0x40, // For PS averaging factor 4, Command = 0x80,
                                                     // For PS averaging factor 8, Command = 0xC0,
// Set LED Pulses to 2 Pulses (with default PS averaging factor 0)
Register Addr = 0x83
                                                     // PS N Pulses register
Command = 0x01
                                                     // For PS pulses = 2,
                                                     // For PS pulses = 3, Command = 0x02
                                                     // For PS pulses = 4, Command = 0x03
                                                     // For PS pulses = 16, Command = 0x0F
                                                     // For PS pulses = 32, Command = 0x1F
WriteByte(Slave_Addr, Register_Addr, Command)
PS Measurement Rate
// PS MEAS RATE register controls the PS measurement rate which define the interval between DATA update.
// Default setting of the register is 0x04
Slave_Addr = 0x23
                                                     // Slave address of LTR-2679PS-01device
// Set PS Repeat Rate 6.125ms
Register_Addr = 0x84
                                                     // PS_MEAS_RATE_register
Command = 0x00
                                                    // Meas rate = 6.125ms
                                                    // For Meas rate = 12.5ms, Command = 0x01
                                                    // For Meas rate = 25ms, Command = 0x02
                                                    // For Meas rate = 50ms, Command = 0x03
                                                    // For Meas rate = 100ms, Command = 0x04
                                                    // For Meas rate = 200ms, Command = 0x05
                                                    // For Meas rate = 400ms, Command = 0x06
                                                    // For Meas rate = 800ms, Command = 0x07
WriteByte(Slave_Addr, Register_Addr, Command)
Interrupt Register
// The Interrupt register controls the operation of the interrupt pins and function.
// The default value for this register is 0x08
// The bit7 must be 1.
                                                     // Slave address of LTR-2679PS-01device
Slave\_Addr = 0x23
// Set INT pin is considered active when it is a logic 1 ( with Interrupt pin is INACTIVE / high impedance state)
Register_Addr = 0x98
                                               // INT pin is considered active when it is a logic 1
                                                     // INT pin is considered active when it is a logic 1=Command 0x8C
Command = 0x8C
                                                     // INT pin is considered active when it is a logic 0=Command 0x88
// Set Only PS measurement can trigger interrupt ( with INT pin is considered active when it is a logic 0)
Register_Addr = 0x98
                                               // Only PS measurement can trigger interrupt
                                                     // Only PS measurement can trigger interrupt =Command 0x89
Command = 0x89
                                                     // Interrupt pin is INACTIVE / high impedance state = Command 0x88
```

BN2-

Part No.: LTR-2679PS-01

WriteByte(Slave_Addr, Register_Addr, Command)

Interrupt Persist Register

// The Interrupt persist register controls the N number of times the measurement is out of the threshold range settings before asserting the INTERRUPT pin

// The default value for this register is 0x00

Slave_Addr = 0x23 // Slave address of LTR-2679PS-01device

```
// Set 1 consecutive PS values out of threshold range
```

WriteByte(Slave_Addr, Register_Addr, Command)

PS Threshold Registers

// The PS_THRES_UP and PS_THRES_LOW registers determine the upper and lower limit of the interrupt threshold // value.

// Following example illustrates the setting of the PS threshold window of decimal values of 200 (lower threshold) and // 1000 (upper threshold).

Slave_Addr = 0x23 // Slave address of LTR-2679PS-01device

// Upper Threshold Setting (decimal 1000)

Data1 = 1000 >> 8 // To convert decimal 1000 into two eight bytes register values Data0 = 1000 & 0xFF

WriteByte(Slave_Addr, PS_Upp_Threshold_Reg_0, Data0) WriteByte(Slave_Addr, PS_Upp_Threshold_Reg_1, Data1)

// Lower Threshold Setting (decimal 200)

WriteByte(Slave_Addr, PS_Low_Threshold_Reg_0, Data0)
WriteByte(Slave_Addr, PS_Low_Threshold_Reg_1, Data1)

PS OFFSET Registers

// PS OFFSET registers let user define PS crosstalk of the device. All PS data will be subtracted by this OFFSET registers. // Following example illustrates the setting of the PS OFFSET of decimal values of 200

Part No. : LTR-2679PS-01

Slave Addr = 0x23

OPTICAL SENSOR LTR-2679PS-01

```
Slave_Addr = 0x23
                                                    // Slave address of LTR-2679PS-01device
// PS OFFSET Setting (decimal 200)
PS OFFSET 0 = 0x9E
                                                    // PS_OFFSET Low Byte Register address
PS_OFFSET_1 = 0x9F
                                                    // PS_OFFSET High Byte Register address
Data1 = 200 >> 8
                                                    // To convert decimal 200 into two eight bytes register values
Data0 = 200 & 0xFF
WriteByte(Slave_Addr, PS_OFFSET_0, Data0)
WriteByte(Slave Addr, PS OFFSET 1, Data1)
Control Registers
// The Control Registers define the operating modes and gain settings of the PS of LTR-2679PS-01.
// Main Control Register (0xAD) must be set to 0x18 before turning on PS function.
// It is recommended that Control Register for PS (0x81) to be set at the end of the sequence.
// This is to ensure all register settings are the same for all started measurement.
// Default settings is 0x10 for PS register (both in Standby mode after power up).
Slave\_Addr = 0x23
                                                    // Slave address of LTR-2679PS-01device
// Enable PS
                                                    // MAIN_CONTR register
Register\_Addr = 0xAD
Command = 0x18
                                                    // Enable
// LED driver register 0xA4 must be set to 0x04 prior any PS LED setting.
Register_Addr = 0xA4
                                                   // LED DRIVE
Command = 0x04
                                                   // Set to Vsel
// Register 0xB7 must be enabled
Register_Addr = 0xB7
                                                    // DSS CONTR
Command = 0x10
                                                   // Enable
                                                    // PS CONTR register
Register_Addr = 0x81
Command = 0x92
                                                   // For PS 11 bits active
                                                   // For PS 16 bits active
Command = 0xB2
// Enable PS OFFSET (with default PS 11 bit)
                                                    // PS_CONTR register
Register_Addr = 0x81
Command = 0x1A
                                                    // For PS active & enable PS OFFSET
// Enable FTN/NTF (with default PS 11 bit)
Register_Addr = 0x81
                                                    // PS_CONTR register
Command = 0x1E
                                                   // For PS active & enable FTN/NTF
WriteByte(Slave_Addr, Register_Addr, Command)
Data Registers (Read Only)
// The PS Data Registers contain the ADC output data.
// These registers should be read as a group, with the lower address being read first.
```

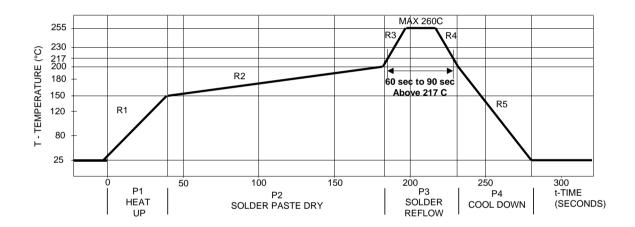
Part No. : LTR-2679PS-01

BNS-

// Slave address of LTR-2679PS-01device

// Read PS_DATA

PS Status Register (Read Only)


// The PS_STATUS Register contains the information on Interrupt, NTF/FTN information, ambient saturation and PS status.

```
Slave Addr = 0x23
                                                   // Slave address of LTR-2679PS-01device
Register Addr = 0x91
                                                   // PS_STATUS register address
ReadByte(Slave_Addr, Register_Addr, Data)
FTN = Data & 0x20
                                                  // FTN = 0x20 → FTN detected
                                                  // FTN = 0x00 → No FTN detected
NTF = Data & 0x10
                                                  // NTF = 0x10 → NTF detected
                                                  // NTF = 0x00 → No NTF detected
Ambient Saturation= Data & 0x04
                                                  // Ambient Saturation = 0x04 → Ambient Saturation happens
                                                   // Ambient Saturation = 0x00 → No ambient Saturation
                                                  // Interrupt_Status = 0x02 → PS interrupt is triggered
PS_Interrupt_Status = Data & 0x02
                                                  // Interrupt Status = 0x00 → PS interrupt is not triggered
PS Data_Status = Data & 0x01
                                                  // NewData_Status = 0x00 → OLD data
                                                  // NewData_Status = 0x01 → NEW data
```

Part No.: LTR-2679PS-01

9. Recommended Leadfree Reflow Profile

Process Zone	Symbol	ΔΤ	Maximum ∆T/∆time or Duration
Heat Up	P1, R1	25°C to 150°C	3°C/s
Solder Paste Dry	P2, R2	150°C to 200°C	100s to 180s
Solder Reflow P3, R3 P3, R4		200°C to 260°C 260°C to 200°C	3°C/s -6°C/s
Cool Down	P4, R5	200°C to 25°C	-6°C/s
Time maintained above liquid	us point , 217°C	> 217°C	60s to 90s
Peak Temperature		260°C	-
Time within 5°C of actual Pea	ık Temperature	> 255°C	20s
Time 25°C to Peak Temperat	ure	25°C to 260°C	8mins

Part No. : LTR-2679PS-01

It is recommended to perform reflow soldering no more than twice.

10. Moisture Proof Packaging

All LTR-2679PS-01are shipped in moisture proof package. Once opened, moisture absorption begins. This part is compliant to JEDEC J-STD-033A Level 3.

10.1 Shelf Life

Device has the shelf life of 12 months if stored in an unopened moisture proof package. It is recommended to store in following condition.

• Shelf Life: 12 months

• Ambient Temperature : <40°C

• Relative Humidity: <90%

10.2 Floor Life

After removal from the moisture barrier bag, the parts should be stored at the recommended storage conditions and soldered within seven days.

Floor Life: 168 hours

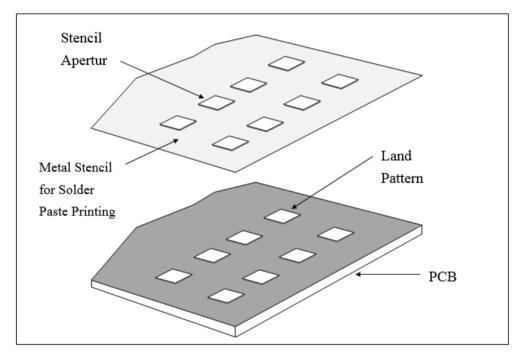
• Ambient Temperature : <30°C

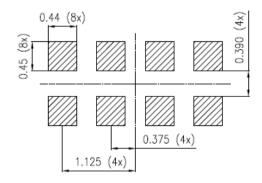
• Relative Humidity: <60%

10.3 Rebaking information

When the moisture barrier bag is opened and the parts are exposed to the recommended storage conditions for more than seven days, the parts must be baked before reflow to prevent damage to the parts.

Baking Conditions

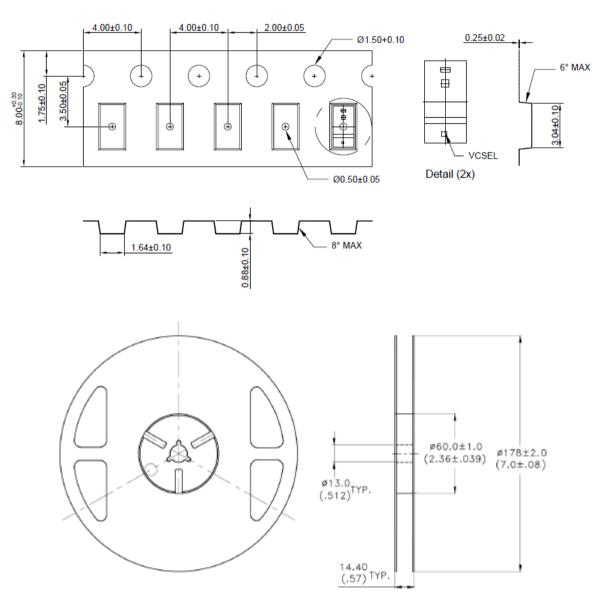

Part No.: LTR-2679PS-01


Package	Temperature	Time
In Reels	60°C	48 hours
In Bulk	100°C	4 hours

Baking should only be done once.

11.Recommended Land Pattern and Metal Stencil Aperture

Recommended Land Pattern



Note: All dimensions are in millimeters

Part No. : LTR-2679PS-01

12.Package Dimension for Tape and Reel

Notes:

Part No. : LTR-2679PS-01 BNS-

- 1. All dimensions are in millimeters
- 2. Empty component pockets sealed with top cover tape
- 3. 7 inch reel 4000 pieces per reel
- 4. In accordance with ANSI/EIA 481-1-A-1994 specifications

Revision Table:

Version	Update	Page	Date
1.0	Datasheet created	Total 35 pages	18/01/19

Part No. : LTR-2679PS-01